Willkommen auf Deiner MEIN.schwimmbad.so

dem Social-Network für Schwimmbad-Begeisterte & Schwimmbad-Macher. Dem 'Facebook für Wasser-Begeisterte'.

Das Netzwerk für Wassersportler und alle die gerne ins Schwimmbad gehen, dafür verantwortlich sind oder dort arbeiten!


    Natürlich ist und bleibt alles
       K O S T E N L O S !!!


kostenlos ANMELDEN

Einfach ANMELDEN und MIT MACHEN. Du kannst Dich über
mit Benutzername und Passwort anmelden oder durch das Klicken des Regestrieren-Button dich direkt auf schwimmbad.so anmelden.

Passwort vergessen?

Ein neues Passwort wird dir per E-Mail zugeschickt.

Mitglieder LOG IN

Volumen berechnen

Für alle Volumenformeln gilt:
V = Volumen
A = Fläche der Seite
h = Höhe
a, b, c = Seitenlängen
π = Kreiszahl (3,141592…)

Zylinder

Kreis-Zylinder
1) die Formel ist für grade, aber auch für schräge Zylinder gültig
2) h steht immer senkrecht zur Grundfläche, ggf. auch ausserhalb dieser und entspricht beim schrägen Zylinder nicht der Seitenlänge
Volumen
V = A · h
entspricht
V = pi · d² : 4 · h (Kreis-Zylinder)
V = pi · r² · h (Kreis-Zylinder)

Mantelfläche
M = U · h

Oberfläche
O = U · h + 2 · A

Würfel

1. sechs Quadrate als Seitenflächen (A)
2. zwölf gleich lange Kanten a

Volumen
V = a · a · a
oder

V = a³
oder

V = A · a (Grundfläche · Höhe)

Raumdiagonale
d = a√3

Oberfläche
O = 6 · A
oder
O = 6 · a²

Pyramide

1. Grundfläche = Vieleck (in diesem Beispiel Quadrat) und alle anderen Seitenflächen sind Dreiecke + eine Spitze
2. Pyramiden können auch andere Grundflächen haben (z.B. Dreieck, Viereck, … Vieleck)
3. Bei schrägen Pyramiden beachten das h steht immer senkrecht zur Grundfläche / ggf. auch ausserhalb dieser

Volumenberechnung
V = 1/3 · G · h
oder
V = 1/3 · a · a · h
oder
V = 1/3 · a² · h

Für alle Pyramiden gilt
V = 1/3 · G · h

Mantelfläche (gerade quadratische Pyramide)
M = a √4 h² + a²

Oberfläche (gerade quadratische Pyramide)
O = a² + M

Prisma

1. Grund- und Deckfläche sind deckungsgleich
2. Grundfläche (und damit Deckfläche) kann verschiedene Formen haben
3. Seitenkanten parallel und gleich lang
4. Zu beachten bei schrägem Prisma: h steht immer senkrecht zur Grundfläche und Deckfläche / ggf. auch ausserhalb dieser. Beim schrägen Prisma ist h nicht die Seitenkantenlänge!

Volumenberechnung
V = G · h (Grundfläche G · Höhe h)

Formel ist für gerades Prisma und schräges Prisma gültig.

Mantelfläche
M = U · h (U ist Umfang von G)

Oberfläche
O = 2 · G + M
O = 2 · G + U · h

(Beim schrägen Prisma ist h nicht die Seitenkantenlänge!)

Kugel

Volumenberechnung
V = 4/3 · r³ · π
V = 1/6 · d³ · π

Oberfläche
O = 4 · π · r²
oder
O = π · d²

Durchmesser
d = 2 · r

Umfang
U = π · d
oder
U = π · 2 · r

Quader

1. sechs Rechtecke als Seitenflächen
2. gegenüberliegende sind Flächengleich
3. zwölf Kanten (je 4 gleich lang)

Volumenberechnung
V = a · b · c
oder
V = A · c (Grundfläche · Höhe)

Raumdiagonale
d = √a² + b² + c²

Oberfläche
O = 2 · (a · b + a · c + b · c)

Kegel

1) Runde Grundfläche + Spitze
2) Beachte bei schrägen Kegeln steht h immer senkrecht zur Grundfläche / ggf. auch ausserhalb dieser

Volumenberechnung
V = 1/3 · G · h
oder
V = 1/3 · π · d² : 4 · h
oder
V = 1/3 · π · r² · h

Volumen des geraden Kreiskegels ist 1/3 des geraden Kreis-Zylinders (selbe Höhe und Grundfläche)

V = 1/3 · G · h ist auch für schräge Kegel gültig

Mantelfläche (gerader Kreiskegel)
M = √h² + r² · r · π

Oberfläche (gerader Kreiskegel)
O = G + M
oder
O = r² · π + M